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PREFACE
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development were carried out by Dr. Joe F. Thompson of the Department of
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voir Water Quality Branch (RWQB), Hydraulics Laboratory (HL), US Army
Engineer Waterways Experiment Station (WES). Drs. Thompson and Bernard
prepared this report.

The OCE Technical Monitors were Mr. Earl E. Eiker, Dr. John
Bushman, and Mr. James L. Gottesman. The EWQOS Program Manager at WES
was Dr. J. L. Mahloch. Mr. H. B. Simmons, Chief, HL, and Mr. J. L.
Grace, Jr., Chief of the Hydraulic Structures Division, directed the
effort. Immediate supervision was provided by Mr. J. P. Hollend, Chief,
RWQB, and Dr. D. R. Smith, former Chief, RWQB. Mr. Merk S. Dortch,
formerly of the RWQB, and Dr., Billy H. Johnson of the Mathématical
Modeling Group, HL, monitored the contract,

During the preparation of this report, COL Tilford C. Creel, CE,
and COL Robert C. Lee, CE, were Commanders and Directors of WES and
Mr. F. R. Brown was Technical Director. At the time of publication,
COL Allen F. Grum, USA, was Director and Dr. Robert W. Whalin was

Technical Director.




R N T O e Ry, S N T T LN U e L g~ R ke Py g T T W WA W LN WY o M MY €

This report should be cited as follows:

Thompson, J. F., and Bernard, R. S. 1985. "Numerical o
Modeling of Two-Dimensional Width-Averaged Flows Using e
Boundary-Fitted Coordinate Systems," Technical Report )
E-85-9, US Army Engineer Waterways Experiment Station,
Vicksburg, Miss.




Ao
AP

".‘

e -'ﬁ"r !

TN

P

- T R TN T T WO FEET L PL T DR U R U R TR T T ey Ty

CONTENTS

PREFACE ® e e 6 e o e * e 8 e & & e 6 & & e 9 S 6 & ¢ s o ° e o o

CONVERSION FACTORS, NON-SI TO SI (METRIC)
UN ITS OF MEASUREMENT L] L L] . . L) . L] L] L L] . . . . L L] . L] ] L L

PART I: INTRODUCTION . . . . ¢ o ¢ o o ¢ o ¢ ¢ o ¢ o o o o o o
PART II: EQUATIONS OF MOTION . . . ¢ ¢ o« ¢ o o o « o o o« o o s &

Integral Form of the Equations . « « « « ¢ ¢ o ¢ ¢ ¢ ¢ o « &
Differential Form of the Equations . . . . . . « « « & &+ « &

PART II1: EQUATIONS OF MOTION IN GENERAL CURVILINEAR
COORDINATE SYSTEMS . . ¢ o o ¢ ¢ ¢ o o o ¢ o s o o o o

General Curvilinear Coordinates . . ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ o &
Transformed Equations of Motion . . . .« ¢ ¢« & & ¢ ¢ o & &« &
Mod oo Se t ® © o ©® e ® 8 ® & e e ® & o & © e o o * e & ¢ o =

PART 1IV: MODIFICATIONS TO THE EQUATIONS OF MOTION . . . . . . . &

Removal of Hydrostatic Pressure . . . « ¢ & ¢« ¢ ¢ ¢ o o o o«
Mass Residual Correction . . o ¢ « o ¢ +o o o o o ¢ ¢ o o o »
Lateral Averaging . . . ¢ o ¢ o ¢ ¢ ¢ o o o o ¢ o ¢« o 0 o o
Incompressible Flow . . &« & ¢ & o ¢ ¢ ¢ ¢ ¢ s o o o o o s &
Final EqQuations . . ¢ ¢ ¢ ¢ o ¢ o o o ¢ o o o o o o s ¢ o o

PART V: DISCRETE REPRESENTATION . . . ¢« ¢ &« ¢« o ¢ ¢ o o ¢« s ¢ &« o«

Solution Grid . ¢ & ¢ o ¢ ¢ o o o o o o o o o o s o o o s o
Difference Representation . . . « ¢ ¢ ¢ ¢ ¢ o o o o ¢ ¢ o o
Difference Equations . . . ¢« ¢« ¢ ¢ ¢ ¢ ¢ & ¢ ¢ ¢ s o e e s
Calculation Procedure . . o ¢ o ¢ o o o o o o o o o o o o »
Acceleration Parameters . « o« o+ o o ¢ o 2 s o s o o o o » o
Turbulence Model . . . ¢ &« o ¢ o ¢ o o ¢ o ¢ o ¢ o o s o o @

PART VI : RESULTS L] L] . . L] L] L] L] » - L] L - L] L] L) L . L . L) - - L

Selective Withdrawal from a Rectangular Channel

with Linear Stratification . . .« ¢« ¢ ¢ ¢ o ¢ o ¢ ¢ o o o &
Cold Inflow into a Flume with Nonuniform Width and

Depth . & ¢ ¢ ¢ ¢ o o o o o o s o o s o o o o s o s o o o
Flow over a Crested Wedr . « « &« ¢ ¢« o ¢ o o s ¢ ¢ s o o » @

PART VII H CONCLUSION e e o 8 & e e e ° ® 9 o ° » 8 s © & o o * o
REFERENCES e e e e * o * e e & & o s s * e s 3 6 & & 3 * o o e+ o+ o
APPEND Ix A: NOTATION ® e e o & o e e * ° ¢ & ® ° % & © 0 ¢ o o o

19

19
27
36

37

37
38
38
46
47

51

51
52
54
64
65
68

71

72
78
83
117
118
Al

-

PRSI RO

b _J o
s T
ERRER SASKe
-“.1" = DU Siad -7- k- ‘ '-. c.

et
«
St s




CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

NON-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

PR

Multiply By To Obtain !M—f
cubic feet per second 0.02831685 cubic metres per second fi;:i
Fahrenheit degrees 5/9 Celsius Jegrees* 3;;;%
feet 0.3048 metres ;;;LQ
feet per second 0.3048 metres per second I%?F?*
slugs per cubic foot 515.50336 kilograms per cubic metre B

* To obtsin Celsius (C) tempersture readings from Fshrenheit (F)
readings, use the following formula: C = (5/9)(F - 32).
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NUMERICAL MODELING OF TWO-DIMENSIONAL WIDTH-AVERAGED FLOWS
USING BOUNDARY~-FITTED COORDINATE SYSTEMS

PART I: INTRODUCTION

1. The use of numerically generated boundary-fitted curvilinear
coordinate systems as the basis for numerical solution of partisl dif-
ferential equations on arbitrary regions is now well established. A
comprehensive survey of the generation and use of these coordinate sys-
tems has recently appeared (Thompson, Warsi, and Mastin 1983), and the
proceedings of a recent symposium devoted to this area (Thompson 1982a)
cover the basic techniques involved.

2. Such coordinate systems have the property that some coordinate
line is coincident with each segment of the boundary in the physical
region, so that the complication of boundary shape is effectively
removed from the problem. In the past decade, the numerical generation
of curvilinear coordinate systems has provided the key to the develop-
ment of finite-difference solutions of partial differential equations on
regions with arbitrarily shaped boundaries. Although much of the
impetus for these developments has come from fluid dynamics, the tech-
niques are equally applicable to heat transfer, electromagnetics, struc-
tures, and all other areas involving field solutions.

3. With coordinate systems that make coordinate lines (surfaces
in three dimensions) coincident with the boundaries, finite-difference
codes can be written which are applicable to general configurations
without the need of special procedures at the boundaries. Even when the
boundaries are in motion, the use of such coordinate systems allows all
computation to be done on a fixed grid with a uniform rectangular mesh
in the transformed (computational) plane. This greatly simplifies the
coding with regard to boundary conditions, which can now be represented
without need of interpolation., It is also possible to distribute the

curvilinear grid lines in the physical plane with concentration of lines
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in regions of high gradients while mairnitaining the square grid in the
transformed plane.

4., With such systems, the grid points may be thought of as a
finite set of observers of the physical solution, stationed so as to be
most effective in covering all of the action on the field. The struc-
ture of an intersecting net of families of coordinate lines allows the
observers to be readily identified in relation to each other. This
results in more simplified coding than would the use of a triangular
structure or a random distribution of points. The grid generation
system provides some influence of each observer on the others so that
when one moves to get into a better position, its neighbors will follow
in order to maintain smooth coverage of the field. The curvilinear
coordinate system thus should cover the field, with coordinate lines
coincident with all boundaries. The distribution of lines should be
smooth, with concentration in regions of hig.. gradient.

5. Numerical solutions of partial differential equations are done
on the curvilinear coordinate system by first transforming all partial
derivatives (or integrals) analytically from cartesian to curvilinear
coordinates, so that the latter become the independent variables,*
Normal and tangential derivatives at boundaries are similarly trans-
formed. (These transformation relations are given in Thompson 1982b).
The result is a set of partial differential equations and boundary con-
ditions in which all derivatives (or integrals) are taken with respect
to the curvilinear coordinates., These equations may then be expressed
as difference equations on a rectangular grid in the transformed piane.
Thus, there is no need for interpolation, regardless of the shape of the
boundaries or the distribution of the curvilinear coordinate lines in
the field.

6. A finite-difference solution is given for the two~dimensional
(2D), time-dependent, width-averaged Navier-Stokes equations, including

an algebraic turbulence model, based on such a numerically generated

* A simple example would be a conversion from cartesian to polar
coordinates,
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boundary-fitted coordinate system., This solution is applicable to 2D
regions of arbitrary shape, with multiple inlets and outlets, and with
obstacles in the interior. The density is taken to be a function of the

‘5? temperature, and the system of equations to be satisfied consists of the

A
-y

continuity equation, the two momentum equations, and the energy T
equation,

7. The solution provides for a choice of central, upwind, or ZIP

i o

P A LAY
Vo e e
Loy oy

0
’
Sar gt

differencing of the convective terms. Viscous terms and heat-conduction

terms are represented by second-order central difference expressions, Q;\_Q

The time derivatives may be represented as either first- or second-order
backward difference expressions. The finite volume formulation is used
so that the equations are fully conservative. The solution is implicit
in time, with all the difference equations being solved iteratively by
successive overrelaxation in each time step.

8. The input allows any portions of the boundary (external or
obstacles) to be designated as inlets, outlets, no-slip surfaces, or
slip surfaces. Arbitrary specification of velocity and temperature (or
density) on inlets and/or outlets is allowed. The output is in the form
of field arrays of the velocity components, pressure, and temperature.
All computation is done in metric units, but the input and output units
may be specified otherwise. The code for this solution (WESSEL) and the
code that generates the boundary-fitted coordinate system (WESCOR) are
described in detail in Thompson and Bernard (1985) and Thompson (1983),
respectively. The coordinate system is generated from the numerical
solution of a system of elliptic partial differential equations with
provision for controlling the spacing of the coordinate lines in the
field (Thompson 1982c). The transformed region is rectangular, with the
obstacles and intrusions transformed to slits and/or slabs. A complete
discussion of the relation between the physical and transformed planes
is given in Thompson (1983).

{E 9. The mathematical development of this solution and the finite
} volume formulation thereof on a general boundary-fitted coordinate sys-

tem are discussed in the following sections. This solution is designed
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.. specifically to include the modeling of the water quality in selective
withdrawal from reservoirs, and results for one configuration related to

e that application are given.
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o PART II: EQUATIONS OF MOTION

10. Since numerical solutions are inherently descriptions of

<5 physical properties interpreted either as values at a finite collection
f:f‘ of points or as average values over finite regions, it is natural to

\'!c

7:? write the governing equations of motion in the form of integral conser-

vation equations. In this form, the equations express time rates of

oy change in a finite volume in terms of the resultant fluxes through the
Eii boundary of the volume. Such equations make no assumptions regarding

: behavior inside the volume, and naturally provide only average values of
the solution over the volume.

11. It is, in fact, in this integral form that the physical laws

wf? of dynamics and thermodynamics must be originally postulated for a
fluid, since the concept of density is strictly definable onrly through

353 an integral expression. Only if the fluid medium is assumed to be con-
5}: tinuous can such integral relations as the Divergence Theorem be used to
"ﬁz obtain partial differential equations by applying the integral conserva-
fﬁ tion equations to an arbitrarily small volume. In this case, the inte-
o gral form that represents the difference in fluxes on opposite sides of
::ﬁ the volume becomes a partial derivative at a point.

;j: 12. While the integral and differential forms are analytically
‘fi- equivalent for a continuum, the two forms can have different implica-

: tions in a numerical solution, which is necessarily carried out on a

xi finite set of points or volumes. This is particularly true when the

;;& solution uses points on a non-cartesian grid or, equivalently, volumes
5:5 that are not cubes. It is also true when physical "discontinuities"

luf such as fronts and shocks occur in the field. In each of these cases,
fﬁ: the numerical representation of derivatives may not always be accurate,
-5:: while it may be possible to represent fluxes through the volume sides
ii; with sufficient accuracy.

{*f 13. For these reasons, the equations of motion are given below,
'55 first, in the integral conservation form. The analytically equivalent

o~ differential form is then given for reference and some later use, but
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the developments of numerical procedures that follow are based primarily
on the integral form. Throughout the presentation of the equations,
subscripts indicate cartesian coordinate directions in tensor notation,
with repeated indices indicating summation as usual. The Kronecker
delta appears with its usual meaning, as well. The common symbols for

the physical variables are used.*

Integral Form of the Equations

Continuity equation

14. The continuity equation, expressing conservation of mass for

an arbitrary moving volume, is

—d[]f pdV+[[ P(u, - U)Jn,dS = 0 (1)

Here, the first term measures the rate of change of mass in the volume,
while the second term, being a surface integral over the entire closed

boundary of the volume, is the resultant flux of mass out of the volume
through its boundary. In the second term, uj is the fluid velocity,

while U, 1is the local surface velocity, so that u, - U, is the fluid

3 h| 3
velocity relative to the surface. Note that (uj - Uj)nj is simply the
dot product (u - U)*n and hence the relative velocity normal to the

local increment of bounding surface, so that the product o(uj - Uj)nde
is the flux of mass through this surface increment. If the surface is
moving with the fluid, then the relative velocity, uj - Uj » vanishes
and the equation states simply that the mass in the volume must be
constant.

Momentum equation

15. Newton's Second Law, that the time rate of change of momentum

equals the sum of the impressed forces, applies to a particular mass,

* For convenience, symbols are listed and defined in the Notation
(Appendix A).
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not to an arbitrary volume. Therefore, the volume used in this relation
must always contain the same particles of the fluid, and its boundary
surface must move with the local fluid velocity. Since the fluid
velocity relative to the surface then vanishes, the expression of the

Second law is as follows:

—d—]f[ pu,dv f[ tnds+fff p
- g.dv (2
de vy 1 sp(t) Vo)t

Here the subscript F 1is attached to the volume and its bounding sur-
face to indicate that the volume is being defined to always contain the
same portion of fluid. The left side then is the time rate of change of
the x; component of momentum of the particular mass of fluid within
the volume. The forces impressed on this mass are of two types, as
expressed by the two terms on the right side. The first term represents
the forces acting on the surface of the fluid volume. These forces
arise from pressure and viscosity and are expressed in terms of the

stress tensor (force per unit area) in which the subscripts indi-

T
ij
cate, respectively, the direction of the force and the direction of the

normal to the surface on which it acts. The product then is the

15"

surface force in x, direction acting on the local surface increment

dS(j) . The seconditerm on the right is the body force, such as
gravity, acting on the mass in the volume, the vector gy being the
body force per unit mass. This body force could include electromagnetic
forces as well as gravity, of course.

16, The momentum equation (Equation 2) may be converted to apply
to an arbitrary moving volume through the Reynolds Transport Theorem,

which states that for any moving volume and any function f :

1/

Applied to the fluid volume V.

Q10)
[ 8 Lo}

dav + [ fU.,n,dS (3a)

F this becomes




[[[ de-[[/ a—f [ fundS (3b)
(t) v (t) Sg

Now consider an arbitrary volume V(t) that instantaneously is identi-
cal to the fluid volume VF(t) . When the two volumes coincide, the
first terms on the right sides of Equations 3a and 3b become identical

so that we have at that instant

—d[f] de--—ff] de+[f £(uy - UDnds (&)
VE(t) v(e) 5(t) .

Since any arbitrary moving volume will coincide with some fluid volume
at any instant, this last equation may be used to replace the left side
of Equation 2, with the substitution pu, = f . The momentum equation

i
may be written for an arbitrary moving volume as:

—d[/[ DudV+[[ pu,(u, - U,)n,dS
dt v(t) i S(t) i1 373
-/ TndS+/[[ pg. dV (5)
/su) 1373 v(e) L

Now the first term on the left is the time rate of change of momentum in
the volume, and the second term on the left. is the resultant flux of
momentum through the bounding surface.

Energy equation

17. The energy equation expresses conservation of energy for an

arbitrary moving volume, and can be written directly as

1
e + = dv+j/ e+ )(u-U)ndS
de [[]v(t) 2 4t 1 S(t) 2 Y1) My T T
-[f nds+f[[ pung /f ndS (6)
S(t) *1'15"s V(t) ] s(t)
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Analogous to the other equations, the first term on the left represents
the time rate of change of total energy (internal, measured by tempera-
ture, and kinetic) in the volume, and the second gives the resultant
flux of total energy through the bounding surface. The first two terms
on the right are the work done by the surface and body forces, respec-
tively, while the last term is the resultant heat transfer through the
bounding surface. In this equation, the energy release by internal
reactions has been omitted. The surface heat transfer vector 9y could
include radiation as well as conduction.

Stress and heat conduction

18. In these equations, the stress tensor and the conduction heat

transfer vector are given by, respectively,

ou du du
i i v _ 2 k (7)
t,, = -pS,, +ul-——+ + [u' - s u)— 6
ij 1] axj axi 3 axk ij
9T
9 = 7 3x (8
i
where § is the Kronecker delta. Both of these quantities are

1]
inherently differential, being dependent on gradients in the fluid, so

the assumption of continuity of the medium is necessary for their defi-
nition. However, average values of derivatives can be defined using the

Divergence Theorem which states, for a general vector A ,

dA
iyl
[[]; axj dv S Ajnde (9)

If A 1is taken as g(i)f » where 5(1) is the unit vector in the x,

direction, then Equation 9 becomes, for any function £ ,

3f ,/:[ “
— dV = flk " °nlds (10)
_Il[}; ax1 s [- -J




[+3]

f

Bxi

which can be used to define an average value of over the volume in
terms of an integral over the bounding surface.

Summary of equations

19. Equations 1, 5, and 6, together with 7 and 8 and an equation
of state and relations for the viscosities and conductivity, constitute
a closed system of equations of motion in integral form.

20. With the portion of the stress tensor due to viscous forces

written as

ou Ju du
- i, 3 v o2 )k
Og5 = ¥ 3 + a%, + (P 3 “) 7%, 843 (11)

these equations are collected here as follows:

Continuity:

-— pdV + p(u, - U,)n,dS =0 (12)
acJJ Jy(ey spy 40 373

Momentum:

_d.fjf pudv+jf pu,(u, ~ U,)n,dS
dt V(t) i s(t) it7j i
= - pndS+[[ ondS+f/j’ pg.dV (13)
J[Z;c) 1 s(ry v(e) 1t
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- —d[[[ p<e+luu)dv+/] p(e+luu)(u - U,)n,dS e
.: dt v(t) 2 14 S(t) 2 174/ i3

= - pu,n_ dS +[f u,0,.n_.ds .
- '['[S(t) 33 S(t) 171373 by
+ [ pu,g.dVv -[[ q,n.dS (14) ;
[/ v(t) 373 s(t) 33 o

Energy equation in terms of enthalpy

iy
S
‘ 1 L ¢
) 'Vx

ll.‘
)

21, The energy equation can also be written in terms of enthalpy,

«
~
e
‘o
e
"

3
-

«
-
]
Y
-
'
-~
-

5 &

RINER

ey

rather than the energy, by substituting

i)
s
.

i n,

= -|-2
h=e 0

to obtain for the left side of the energy equation :jﬁ'_'-

L .. NI
3/ SR TR | BT E
- pth + = u,u, JdV + plth + 5 u,u,)(u, - U,)n.dS
o dt V() 2 14 S(t) 2147y 1 o
A e
: i 3%[[[ pav 'ff pluy = UyInyds
NN v(t) S(t) ey
Ly e
-, ‘-‘__-(,
e, a2 s
<y Fixed volume e
u - YN
»: 22, For a fixed volume, U, = 0 and the time derivative passes .
'*-i:" inside the volume integral., For example, the first term of the momentum -.f::,-
:"’1 s
28N equation becomes e
e RO
- "’ : ‘.~ ‘n-
e 9 (Dui) S
q —_— dqVv
",l V 3t
4'_:.- -
‘j::::: with similar changes in the other equations. :‘
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Differential Form of the Equations

Basic equations

23. The differential form of these equations is cbtained by
applying the Divergence Theorem (Equation 9) to convert all surface
integrals to volume integrals and then reasoning that, since the result
must apply for any fixed volume no matter how small, the integrand must
vanish. This yields the following equations from Equations 12, 13,

and 14 for the continuity, momentum, and energy equations, respectively,

Continuity:
3 (pu,)
% 1 .
at + X, 0 (13)
J
Momentum:
3(pu,) 3(pu.u )
1 1%y _ % __4
3t T ax ox; | ox, | P81 (16)
Energy:
2 ple + 5 u,u + 2 ple + u,u, ju
at 2 it axj 2 171i/73
a(pu;) 3(u,o,.) 3q
= - N 1717 + pu.g. ~ " (17)
axj 3xj 3] 3Xj

The differential form of the equations implies the assumption of con-
tinuity of the medium, of course, since it was necessary to apply the

integral equations to an arbitrarily small volume to obtain this form.
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24N Alternate form of the energy equation
o 24, 1In the differential form, the mechanical energy contribution
- to the energy equation (Equation 17) may be removed by multiplying the
':-:'{ momentum equation (Equation 16) by uy and subtracting the result from
‘\q‘q»
- the energy equation, the result being
o
! 3 9
ity a(pe) + (peuj) = _p a_l.!i + [o] .au_i - _Ei (18)
o 3t 9x ax ij 9x x
o h| h| k| i
<
'F:.:‘
& or in terms of enthalpy,
hy
NG
SR 3 (phu,) du 9q
’v 3(ph) ) - 9p_ i __
<l 3t | ox 3t T Y ax. T %45 3%, ~ 3x (19)
3 3 i i
L og
e Thus, Equations 15, 16, and one of the Equations 17-19, together with S
.':.:::: equations of state, etc., constitute a closed system. ::'_. '.j:
\. 25. These forms of the energy equation with mechanical energy ':':’:f'-'}
) removed can be put in integral form by integrating over the volume and *“—*-‘
., . e
reversing the use of the Divergence Theorem (Equation 9) and the ,-.'_:-.::
:'f'::' Reynolds Transport Theorem (Equation 3) with the result R
‘_L"-
d =
e rT pedV + pe(uj - Uj)nde ;
"}J V(t) S(t) o
S e
i du du e
v(t) 3 3 5(t) s
S =
f':": or, with the enthalpy, ,-.::‘.::'
i ot
-'x-' -!-.---".
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f] e f[
_ phdV + ph(u, - U,)n,dS
dt V(t) S(t) AR
’?dt-f[[ pdV+[f p(u, - U,)n_dS
 J Jv(e) scey 3 4

JI[ oymte- ]
+ ] — dV - q.n.ds (21)
v(ey 13 3% s(r)y 33

J

Therefore, in integral form, the energy equation (Equation 14) can be

replaced by either Equation 20 or 21.

Set of equations for present model

26. The set of equations chosen for the present model is composed
of the continuity equation (Equation 12), the momentum equation (Equa-
tion 13), and the energy equation (Equation 20), together with the
stress and heat flux relations, Equations ll and 8, with the bulk
viscosity u' set to zero. These equations are applied on a fixed
curvilinear coordinate system so that the surface velocity Uj

vanishes. The time derivatives then appear as partial derivatives

inside the integrals.
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I;:-f' PART III: EQUATIONS OF MOTION IN GENERAL
" CURVILINEAR COORDINATE SYSTEMS
iﬁ 27. In order to treat completely arbitrary configurations, the
'ﬁl; equations of motion must now be transformed from the cartesian system of
iﬁ the preceding section to a general 2D curvilinear coordinate system.
A
oY General Curvilinear Coordinates
-i{ Unit tangents and normals
28. To establish the terminology, consider the following general
{}: element bounded by four curved sides, on each of which one of the curvi-
ﬁ} linear coordinates is constant:
Y
‘L
e
_ line of
o constant n
- (n-line) Note: direction
:‘-f: of k is out of page
.
)
line of
constant
(g~line)
m 29, With the position vector r = ix + jy , we have the following
:i: relations. The unit tangent to a line of constant N is given by :Lj:f
dr L]
=5 ix, + jy MO
: (n) dé ~TE =T E 1
L € = = = — (ix, + jy;) (22) !
: =R B RO
dg £ £
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with y = xE + yg » and the unit normal to a line of constant n is

g(n) = k X g(n) = L (Gx, - iy,.) (23) o -
~ '/; =27g =g T

Similarly, for a constant-£ line, the unit tangent and normal are i;;

[
dr it

an ix, + 3y i
E(E) - _gn, = n_ n_ 1 (ix, + jy,) (24) "j:i‘
l_f‘ 2 2 = DS

an Xn T ¥y

with o 2 x " +y . The normal is

E(E) = E(E) Xk= L (-lxn + iyn) (25) “

N

Area and volume

30. Then the area of a face on an N-line between two &-lines is R

given by

ast™ -

k X

& &

= |k X (xg + jyp) |

= - lixe - dvel = \x2 +yE= A (26)

and the area of a face on a £-line between two n-lines is

‘-‘1'
&l

NG
»
2

- /a (27) S

Then on an n-line, ff}“;
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and on a &-line,

Also, for any vector A = 1A1 + jA2

while on a &-l1ine,

31. The volume

]

]

= Ix - iy

-ix_ +
Ix, + 1y,

+ A.x

= “Aye A

- Alyn - A2xn

of a cell is given by

dr
EX T

ke [(x, + Jy) X (x + 3y )]

ke Cex, v - ke y ) |

- sJ
lxsyn xnyzl

where J 1is the Jacobian of the transformation.

Divergence

32. Now by the Divergence Theorem, we have for any vector

we have on an n-line,

g

(28)

(29)

(30)

(31)

(32)
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Application of the Divergence Theorem to the cell yields

(g-4)3 = [é-g(“)ds(”)]m ) é.g(n)ds(n)]n_ . [é-g(g)ds(g)]g_‘_

- fan@as @],

Here, the following notation is used:

Thus

(V-A)J = (-Alyg + AzxE nt " (_Aly£ + AZXE n

+ (Ay - - -
Ay, Az"n)g+ Ay, Azxn)e-

Note that, in the limit, this could te writtern in derivative form

(Y-é)J = (-Aly + Azxﬁ)n + (Aly - A X )

£ £ 2"n'g

where the subscripts now indicate partial differentiation.

33. This then becomes a relation for the divergence:




1
VeA = 3 I:(--AlyE + AZxE)n + Alyn - AZXU)E] (33)

If the derivatives are expanded, there is a cancellation of cross derivatives
of x and y so that

VeA = x (34)

n

-A x, + Al yn - A

y_+ A
1n & 2n ¢ £ ZE

1
J
34, Both Equations 33 and 34 are valid expressions for diver-
gence, and the two are-equivalent analytically. They are not equivalent
numerically, however, since the latter involves the expansion of deriva-
tives. The form of Equation 33 is the geometrically conservative form
(after multiplication through by the Jacobian). Note that the differ-
ence between these two forms is that in the geometrically conservative
form, Equation 33, the "area" through which the flux of A flows is
that of the bounding faces through which the flux occurs. In Equation
34, however, the area is evaluated at the cell center rather than on the

boundary. For a sharply deformed cell, such as is illustrated below,

the fluxes through ¢+ and £- sides would both be computed using the
area on the dotted line in Equation 34. With Equation 33, however, the
actual areas of the ¢+ and £- sides would be used. Thus, the fully
conservative form should be much more tolerant of deformed coordinate

systems.




Geometrically conservative
- derivatives and surface integral

N 35. If é is taken to be gf , then by Equation 33,

N 1
A f =< Kf - (f 35
-, x J E yn)E ( yE)n] (33)
.

which gives the geometrically conservative representation of the partial

N

PR AP i
iy

— B AR A mide
. ISP « o
PR LR PR ) AN

[—(fxn)g - (fxE)n]

~<
-

except for the s+ 1s the surface integral,

1
J
[/Ajnjds = j:/A:-BdS = (A)y = A + (-Apy

ﬁ = G+ Gy,

£ + A2x£)n

where

A=Ay - Ax

A2 = --Alyg + Asz

Here Kl and KZ are the fluxes of A through the § and n

respectively. In fact, note that by Equations 23 and 25,

24

derivative with respect to x . Similarly, with A = jf we have

(36)

36. Recall also for later use that the right side of Equation 33,

a37n

(38a)

(38b)

faces,

- K J :
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et Thus Kl is the component of A normal to a £-line multiplied by the
) area of the g-face (Vo). Similarly, A is the normal component of A
o on an n-line multiplied by the area of the n-face.

37. Comparing Equations 33 and 37, it is clear that the equations

. of motion can be put in geometrically conservative form either by apply~-
ing the integral form to the cells of the curvilinear coordinate systenm,

i.e., using Equation 37, or by simply representing the derivatives in

jﬁ’ the differential form by the geometrically conservative expression,
Eﬁ i.e., using Equation 33.

o Geometrically noncon-

N servative derivatives

- 38. 1In geometrically nonconservative form we have, with the

derivatives expanded in Equations 35 and 36,

o 1

o fe = 7 Opfe = yefy) <9
J

!

£ o= = (xf - xf 40

- y T3 (gfy T ) (40)

r‘? 39. The second derivatives are, by repeated application of these
P relations,

£ o= (y%f - 29y £+ 1y )- -1 (oDYY £ + DOYX £ ) (41)
; xx ;2 \'n &g £€ngn  “gm/ g2 y X

%

A with

.1.

ta
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DDYY

DbYX

and
1 2
f = — f -2
yy  j2 (%n gg =
with
DDXY
DDXX =
and
f = —l X f +
xy ;2 [ nn EE
with

DDXYY X

DDXYX = x

2. _, + 2
Yn¥ee = Ve¥n¥en T Velan

= y2x -2y .y x, + y2x
n gé E°n &n £ nn

3

2 1 — —
+ - - XY £ +D f 42
xnfEn ngnn) JZ (DD y DXX x) (42)

x2 - 2x.X + x2
nEE £*n"gn £ nn

2x . X X + x2

n*ee T Fe¥n¥en T *eFan

1
=
o]

Xg¥gfny = gy + Xy f ]

+ L (ﬁbi?? f + DDXYX f ) (43)
J2 y x

wnlee ¥ ¥eYeVnn T gy * xnyE)YEn

Wr¥ee ¥ Re¥e¥nn - Ke¥q T X%,

26




o 40. Finally, the Laplacian is, from Equations 41 and 42,

“ e V f
)

1 1 (— — )
= — (af,, - 28f + - — (DDY £ + DDX f 44 T
A N *gg » En ¥ o 32 y X ‘o o
. with ]
..
T DDY = - + ]
DDY aYee ZByEn Yo S

DDX - +
axe = BX, tyx,

S z +

B2 XX ¥ Y
L i

o and o and y as defined earlier:

..«
,*::J 2 2
e Yy =x. +ty
3 £
oo

TR

Transformed Equations of Motion

‘
3Pt
A
etete

3 ' e

Continuity equation

oo e
LS

[~ 41. Using Equation 37 we have

= j /pujnjds = (pw, + (V)

where by Equation 38
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ct

=uy, - v (45a)

g™ e (43b) p

<l

= VX

Here u and v are the velocities normal to the E and n 1lines,
respectively, multiplied by the area of the faces through which the flow
occurs (/E and /; , respectively). Then, since

..

the continuity equation (Equation 12) becomes
P+ (ou)c + (ov)n =0 (46)

As noted above, this form could also have been obtained by using the
geometrically conservative expressions for the derivatives, i.e.,
Equations 35 and 36, in the differential form of the continuity equation
(Equation 15). The same applies for the geometrically conservative
forms of the momentum and energy equations developed below.

Momentum equation

42, In the momentum equation (Equation 13) we have, by Equation 37,

Il

- u <+ v
uiujnjds (puiu)g (puiv)n

»:;_‘-:.
o [ [ dS = (3,), + (G
- 13"y (03¢ + (949,
b
j!? where, by Equation 38,
b

28
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-]

ge 941 = 9117, T %12%, (472)
12 T 949%¢ T 911Y¢ (47a)
::f{ The pressure term is a bit different. We have

//nds [amgm] n(n)ds(n)]

-‘::.: p~ p"" 4nt p~ n-

o (£) 45 () (£) 4o (£)

o + PB ds Je+ - |pn">"dS £-

- = |pUx - iyg)]rl + [p(ycn + iyn)]E

i

z by Equations 28 and 29. Then

: [ f ds = 1 . _ .

pn i [(pyn)g (pyE)n] + g[(pxn)E (pr)n]
f?: Finally, the gravity term becomes
/[Lgidv - 0813

The entire momentum equation then is

(pu) J + (puu - 511 + pyn)E + (puv - 512 - pyE)n -0gJ =0 (48a)
NG (pv) J + (pvu - 521 - pxn)E + (pvv ~ 522 + pxﬁ)n ~ 0g,J = 0 (48b)

f;' with

29
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Energy equation

43,

al
n
Q

11 127n

T 91V

= O20%y

= %1%

(oeﬁ)6 + (pei;)n

_/:/;eujnjds =
[/;J.njds =

@) + (@),

with, by Equation 38

The energy equation

(pe) J + (peu + q,), + (pev + q,)

~

91 = 9y T 9%y

~

9 = 9% T Y

then becomes,

du
- P ax
J

Y P
n ij 9x,
] J

Stress and_heat conduction terms

44,

Using Equations 35 and 36 we have

30

J=0

(49a)

(49b)

(49¢)

(494d)

(50a)

(50b)

(5D

For the energy equation (Equation 20) we have, by Equation 37,
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3 -2 Ty ), - (uy,) ] (52a)
» Le =3 [ - (uyg)y, a
1 1

;—(an)g + (uxg)n] (52b)

~«
o=

vy, - <vy5)n] (52¢)

<
[}
ol

:i 21 [
‘C vy 3 i (vxn)s + (vxE)n] (52d)

»
(M

_(Tyn)c - (Tyg)n] (52e)

e &

v
.
[

v
S - oo
[R5 I U |
e o n ."« i
T W
' L e
S N A

-
:(Txn)i + (Txﬁ)n] (52f)

<
O

'-:f =

:f With these relations, we then calculate from Equation 11, with u' =0 , ,?::S

N '"c:
4 2

- O T3 W, m 3 uvy (53a)

uvy - % u_ (53b)

o
Q
]

wis

22
-~ Oip =0y = u(uy + vx) (53c)
and from Equation 8,

q1 = - T (543)

X

~..: qz - - .(Ty (54b)

Also, for the last term in the energy equation (Equation 51) we have
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o’ —

ij 9x P ox = (011 - p)ux + (022 - p)vy + 012(vx + uy) (55)

Wall heat transfer ;:;ﬁf;;
45, When a cell side coincides with a wall, the wall heat -

transfer supplies the value of a on that side as follows:

(n)
oS s s

(m

n s

S S e have, using the

For an n-line wall

normal as given in Equation 23,

o aeleg(M] 2 2L -
Ya11 = [%9 ] " (4%, = a4;7,)

I+
—

9

Sl

where the + applies to the lower wall and the - to the upper. Thus

~

UG =t G (56)
NONNRG
- 46, Similarly, for a ¢-line wall £ we have
Eg q =t 0, (57)
with the + corresponding to the left wall and the - to the right.




‘5 Wall temperature

47. For an n-line wall, 52 =+ Vfy 9a1l from Equation 56. Then,

< using Equations 50b, 54a-b, and 52e-f we have
-
o /v -3 - -

: Y Agann T 92 T 9% T )Y

= K (Tyxg - TxyE)

- - _lj_ {['(Txn)e + (sz)n] Xg - [(Tyn)g - (Tyg)n] yE}

or,

o«

(Txg) X + (Tyg)pye = (T gxe + (Ty)eve ¥ ¢ ¥ q ) (58)

The wall temperature can be evaluated from this equation using one-sided
differences for the n derivatives.
48, For a &-1line wall,

l::::
(Tx ) px, + (Ty ) ey, = (Txp) x + (Typ) y ¥ 374 (59)
n’£¥n IYn’e¥n £’ n¥n g/n¥n T x T Ya11
::f Here one-sided & derivatives are used.
5? 49, With the derivatives expanded, the nonconservative forms of
" these conditions are, from Equations 58 and 59, respectively,
o YI. = BT, ¥ 3 /% (60)
o n E7 % T a1l
;} for an N-line, wall and
33
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=J
oT, = BT+ T (61)
for a £-line wall. :_;::f
Slip boundary conditions
50. On a boundary with free slip, the normal velocity component o
and the vorticity must vanish. These two conditions serve to determine .
the two velocity components on such a boundary as follows. -.: - _;
5l. The vorticity is given by ;:'j,-._;
w=v - uy =0 (62)
or in curvilinear coordinates, using Equations 52a-c,
!.' R
- + (ux - = 0 63
(vyn)‘E (vy‘E)n (u n)E (uxg)n (63)
52. On an n-line boundary, the vanishing of the normal velocity is .
expressed from Equation 45b as 3’
- =0 64
VK, - uy, (64)
and in the above expression of vanishing vorticity, we have, in discrete .'_
form, with the upper sign applying to the lower wall w , etc. -:'.-f' -:'::_
-3
vy, [Fl(vys) +F Oy * F3(vyg)wzz] X W
3 1 -
where (Fl’ FZ’ F3) are (1, -1, 0) and L -2, 3 for first and second
order, respectively. Then e
.
n
34 S
—
] . _® 9




s A en- e haa™ e £ Sany IMNTI M St 18 e TR T ———
B

(vy gt |F vy + Folvydy,, * F3(Vy5)w12]

vlux )yt [Fy(ux) + Fyluxp)yy, * F3(“x£)w~:2] =0

Thus

.........................................................................

(Fxxg Flyi v + [(vyn)E + (“xn)ﬁ] - F2 [(vyi)w:l + (“xg)wzl] - F3 [(vy'z)w,_,2 + (UKC)":Z]

Then, with
(n) - =
r oz o+ [(vy‘n)E + (uxn)E]— FZ[(vyg)wtl + (uxc)wﬂ]

- Fy [(vyg)wtz * (“xg)wtz]

we have

X
u = TF"; r(m (65a)
1
__yg (n)
V=F r (65b)
1

53. Similarly on a ¢-line boundary, we have, by Equation 45a,
(66)

-vx =20
uyn n
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so that with

© .3
Peet o= [(VY5)n * (“xi)n]_ F2 [(vyn)wtl * (uxn)wﬂ]

- F Evy ) + (ux ) ]
we have 3 n'wt2 nwt2

NG

RAING)

Model Set

54. The set of equations in general curvilinear coordinates used
in the present model are the continuity equation (Equation 46), the
momentum equation (Equation 48), the energy equation (Equation 51),
together with the expressions given by Equations 52-55 and the appli-
cable boundary conditions given by Equations 56 and 57 for the hest

transfer, Equations 60 and 6] for the wall temperature, and Equations 65

and 67 for the wall slip velocity. Additional relations and some modi-

fications to these equations are presented in Part 1V.
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';j_" PART IV: MODIFICATIONS TO THE EQUATIONS OF MOTION
w
‘;, Removal of Hydrostatic Pressure S
x5 S
A58 55. One modification is made by subtracting out the hydrostatic R
SOl o
«\} pressure p, which satisfies, by Equation 13 with zero velocity, the =
- equation f/ f[[ '
o 0 == JJpynyds + Ps8ydV
where Pe is the initial density. The momentum equation (Equation 13) .; _

then can be written, for a fixed volume, as

i o0, (]
m fj[——a—t— av + puiujnjds -.'.
= - j_/(p - PH)nidS + ]/c;ijnjds + [/ﬁp - Ds)gidV (68)

with the hydrostatic pressure calculated from S—
L AR
Py=Po* f Peg dr (69) e

%o

Here Py is the pressure at some reference point AN

56. This modification is reflected in the momentum equation
(Equation 48) by the replacement of the pressure with the difference

between the true pressure and the hydrostatic pressure, and replacement

of the density in the gravity term by the difference from the initial
value. This is valid only if the fluid is initially in a condition of ;’1n
static equilibrium. K
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Mass Residual Correction

57. As a stabilizing measure, the products of the discrete resid-
ual of the continuity equation (Equation 12) and the velocity and energy
are added to the right sides of the momentum and energy equations,

Equations 48 and 51, respectively, as corrective source terms. These

terms are, respectively, uiD and eD , where D is the residual

evaluated from Equation 46: RRNETIRA

3 [ [ HEES
[[/;t dv + pujnde r

(70)

o
(]

pJ + (oﬁ)g + (m?)n

58. 1t may be noted that the analytical effect of this corrective
use of the continuity equation in the momentum and energy equations
would he to reduce the equations in the nonconservative form if the
equations were coverted to differential form and terms were cancelled
where possible. However, the effect is not the same in the difference
expressions since the use of different points in the various expressions
prevents such cancellations on the discrete grid. The numerical effect
of these corrective terms is to resist the tendency of large outflow
from a cell to catastrophically deplete the cell contents, and similarly

to lessen the effects of large inflow.

Lateral Averaging

59, Variable width is accounted for in the present model by the
procedure of lateral averaging, which has seen much use in hydrodynamic
problems to introduce some three-dimensional effects into two-
dimensional computational models. With this procedure, the equations of

motion are integrated laterally, and the dependent variables are
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.'_:: replaced by lateral averages thereof. Thus, with the z-direction being
T:j the lateral direction, we have the definition of the lateral average of
’ a quantity f given as

E_; zz(x,y)

% - - 1

-} f(x, S f(x,y,z)d
" (x,y) Bx.y) (x,y,2)dz oD

" z, (x,y)

k:: where B 1is the width, i.e., B(x,y) = zz(x,y) - zl(x,y) . Then, with
e f' a perturbation from this average value, we have

f(x)y:z) = E(XQY) + f'(x,y.z) (72)
{j In all that follows, such perturbations will be assumed to be small in
;;f comparison with the average value. Thus |f'| << Ifl .
,:%: Continuity equation

‘:j: 60. Applying this procedure to the continuity equation

(Equation 15), we have
2
T}: 20 + 3 (Pu) + 3 (ov) + d(ow) 0|dz
ot dx dy oz

J z

1

';;? Now

5

8 i) )

N 3p 3 o

1 g = = —
3t dz rTY pdz = B 3

X “1 %1

o and

x
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z
2 2
dCu) . _ 3 3z
9% dz axf pudz - (Du 3x>

z z

and

2 z2 z,
3(pv) 3 3z
—_—2 dz = — dz - =

3y z 3yf pvdz (Dv ay)z
%1

[u—

and

2
| e ()

J 1
1

But w=u a_z + v -a—z on z and 2z in order for the flow to be
9x dy 1 2

parallel to the boundary. Therefore, the brackets cancel and we have

(]
o

_ 2 £2
a_p _i = (AW ] _3_ ~ ' (o '
Bt+3xf (c>+o)(u+u)dz+3y (P +0o")(v +v')dz
Z

Z 1

or

2

-5
1

p'v'dz = 0

-]
@
&1

2]
2 g5my + 2 (m5Ty 4 2 ratdz + 22
* % (BDU)+ay (BOV)+ax[ pudz+ay
1

N
[
N
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Neglecting the quadratic prime terms, we then have for the laterally

averaged continuity equation

3p

B3t

] - 3 -
+ Ix (Bpu) + W (Bpv) = 0 (73)

The effect of the lateral averaging on the continuity equation in geo-

metrically conservative form (Equation 46) is thus to multiply the
density by the width B in all terms.
Momentum equation
61. Applying the same procedure to the x-momentum equation from
Equation 16, we have, with subscripts indicating components, not
derivatives,
#2
3 (pu) a(pu) 4 o(puv) _ d(puw)
at 9x 3y 3z ax
%1
30 aoxy aoxz
T Tax a8y 9z P& T 0]d=
) Now
N z, zZ, _ Z,
- 3pu) . _ 2 _plGw) 2 ry!
- [ ac 92 " 3¢ pudz = B =20 + 3¢ pluldz
z, z;
%2 z,
dz-—a- uzdz-(uziz—
Ix P e ox 2
1 1
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Similar terms occur for the other convective terms. The brackets cancel

as in the continuity equation. The convective terms then become

3(B5u’) , 3(BRuv)
x dy

+ prime terms

Neglecting the p' terms, we obtain for the remsining prime terms:
g g

%2 %2
____3_ Py 2 __2 g e,
oy 0 u'“dz] + 3y [} u'v'dz
21 %
62. Also, for the pressure terms,
z2 22 z
g, .2 A
ax z ox pdz P Ix
z1 z1 1
- 3(B-) ) 8z 321

Now consider the pressures impressed on the volume:

Py

2 Py L‘""i«»l

3]

1
If p, and p, are written p, = p, = 3 (pi + p1+l) , then
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3z 3z %:Ef{
“Pra TPiax T 5'(pi * pi+l) Ax )

which cancels the S 28 from the first term. Therefore,

9xX
%y
[ %y, .8
9x X
%

63. For the stress terms we have,

2 z
g w2 w5y - (o, 22)
ox 9x XX cxx 9x
z
2z 1
1
and
z
2 acx ] - ) 22
—ldz=—(Bo ) - o 2z
oy Iy Xy xy 3y/,
z1 1

Also

64. The gravity term becomes simply

43




65. Then the laterally averaged momentum equations, with the o'

terms neglected, are for the x-direction,

a(Baxx) B(BGXX?

- -2 —_— -
g d(pu) _ 3(Bou) . 3(Bouv) . o 3p _
ax ox oy

at ax 3y

Zz 4

2 2 L
- Bp AN b 12 9 I= 1yt B
Bogx + = p f u'“dz | + 3y p f u'v'dz :
2 z j';;f
b
z z
2 2 z
+ (o z + lo -é-z— - o 2 =0 (743)
XX 9X 2 Xy 93y 2 xz),
1 1 1

and for the y-direction,

3(Bo 3(Bo
( xzi ( yy)
9x 3y

-— _— -2 -
B 3(pv) . 3(Bpuv) . 3(Bpv ) + B 8p _
ot X% 3y 2y

(74b)
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66. In the present model, the effect of the correlation terms is
incorporated into the averaged stress terms through turbulence models as
discussed in a later section. The stresses on the lateral boundaries
are neglected. The hydrostatic pressure is removed from the above equa-
tions by simply defining the pressure in the above equations to be the
difference between the true pressure and the hydrostatic pressure and
replacing the density in the gravitational terms with the difference

from the reference value.

67. In the geometrically conservative forms of the momentum equa-

tion (Equation 48), the effect of the lateral averaging is to multiply
the first terms, the pressure terms, and the gravity terms by the width
B, and to insert B in the ¢ and n derivatives for the convective

and stress terms.

Energy equation

68. In a2 similar manner, the latersl averaged energy equation is,

using Equation 18,

5 2GE) , 3(85E) | @) , [a@;) . a(ntn]
at 9x 3y ox oy

- 3w - (a(BY) L 3Bw)), - 3(BV)
'["xx ax +"xy( x ey)+°yy ay]

3(Ba))  a(Bq,)
+ + =
9xX Yy

0 (75)

The correlation terms between velocity and energy have been neglected,
along with the stress work and heat transfer on the lateral boundaries.
69. The effect of the lateral sveraging on the energy equation in
geometrically conservative form (Equation 51) is to multiply the first
term by the width B and to insert a B inside the { and n deriva-

tives and inside the derivatives in the last term.
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Effect on hydrostatic
pressure snd mass residual

70. Since the width B 1is multiplied by the pressure and gravity
terms in the laterally averaged momentum equation (Equation 74), the
lateral averaging has no effect on the hydrostatic pressure in e
Equation 69, .ﬁffi.ﬁ

71. - The laterally asveraged mass residual is obtained by inference

from Equations 70 and 73. Dropping the bars indicating average, and

using the transformed derivatives, this quantity becomes f;ig;::
D = BotJ + (Bpu)E + (pr)n (76)

Incompressible Flow

72. Of particular interest in the present work are situations in
which the density variations are negligible in all terms except the

gravity term pg . Attention is further restricted to cases in which

density may vary with temperature but not with pressure., (That is, the
temperature gradients are large enough to affect the density, but the
pressure gradients are not.) Thus, from a practical standpoint, the
fluid is mechanically incompressible and the laterally averaged con-

tinuity equation reduces to
(Bu)x + (Bv)y = (BU)E + (Bv)n =0

which represents the well-known Boussinesq approximation for variable-
density flow., Note that this removes the pressure term from the

laterally averaged energy equation (Equation 75),
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Final Equations

73. The final set of equations to be solved in the present model
then consists of the momentum equation, the energy equation, and the
continuity equation (discussed later) together with the relations for
the stress and heat conduction and the boundary conditions. This set is
summarized as follows:

Momentum equation

74. From Equation 48 with the modifications indicated above we

011)] + [é(pouv - 012)]
€ n

B(ngn - Pnyg) - B(p-p)gJ-u =0 (77a)

have

BpoutJ + [B(pouu

+

and

Bo v, J + [B(povﬁ 521)] + [B(povw'} - 522)]
3 n

+ B(-ngn + anE) - B(p - ps)gZJ -vD =0 (77b)

where P zZ p - Py is the difference from the hydrostatic pressure, g
is the initial density, p 1is the present density, and Py is a con-
stant reference density, Nonconservative expressions have been used for

the pressure terms, for reasons that will be explained later.

Energy equation

75. From Equation 51 with the modifications we have R
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2(Bu,) .
-J oy %5 -~ =0 (78) D
] Y
Vo
Continuity equa- :;::;%
tion and mass residual R
76. Subject to the Boussinesq approximation, the continuity equa- ?ff:;
tion is .
(BG)E + (BG)n =0 (79)
and the mass residual is now given by
D = oo[(Bu)E + (Bv)n] (80)

Boundary conditions

77. The boundary conditions are as follows:

. Wall heat transfer: Equations 56-57.

o |o

. Wall temperature: Equations 60-61.
c. Slip wall velocity: Equations 65 and 67.

78. The following choices of boundary conditions are incorporated:
3. Thermal.

(1) Specified boundary temperature, with the boundary
heat transfer calculated from Equations 56 or 57.

s (2) Specified heat transfer, with boundary temperature
calculated from Equations 60 or 61.

e

N (3) Extrapolated boundary temperature from interior,
i.e., equal to the interior value adjacent to the
- boundary.
- b. Velocity.
e =

.2
v

(1) Specified boundary velocity.

v
]

Y.
y % il
. o
€ e,
4 13 '
.t e,
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(2) Slip, with the boundary velocity calculated from E]Sjﬁ:

Equations 65 and 66. SRR

(3) Extrapolated boundary velocity from interior. ol

Solid walls are treated with thermal and velocity boundary condition (1) gﬁf??%

or (2). Inlets have thermal and velocity boundary condition (1) or (3). L b

Outlets have thermal and velocity boundary condition (1) or (3). Free [ﬁ
surfaces are approximately simulated with thermal and velocity boundary

condition (3).

79. The normal velocities on all inlets and outlets must be such
that the total outflow exactly balances the total inflow. The mass flow
rate through an n-line boundary is, by Equation 45 with cognizance of
the width B , simply poB; while that through a £-1ine boundary is
poBu . Outflow through a lower (upper) n-line boundary is then -(+)
poBv » and inflow is +(-) poBv . Similarly, outflow through a left
(right) £-line boundary is -(+) poBu , while inflow is +(-) poBu . The
total flow rates are calculated by summing over all points on the appro-

priate boundary segments,

Auxiliary relations

80. In the above equations, the following auxiliary relations are

used:
a. u and v from Equation 45.
b. §ij from Equation 49,
£ g4 from Equation 50.
d. oij from Equation 53.
e q from Equation 54,
f. Velocity and temperature derivatives for stress and heat

conduction from Equation 52.

g+ The relation Equation 55, with u and v multiplied by
B .
h. Py from Equation 69,
i. D from Equation 81.
In addition, the conservative derivative expressions are used for the
xj- derivatives in the energy equation., The metric components are

repeated here for completeness:
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PART V: DISCRETE REPRESENTATION

" (AL

1

81. The present model is a finite-difference solution based on

Fag” D
P

the integral form of the equations of motion, i.e., with the equations

v
«
e

S
’

v

in geometrically conservative form. The solution is implemented on a

')
8.2
»

al s

boundary-fitted coordinate system which allows boundaries of arbitrary ﬁl

i
’
. L
s
:
2

shape to be treated. ;_
82. The boundary-fitted coordinate system is generated numer-
:QE ically by solving a system of elliptic partial differential equations as
discussed in general in Thompson (1982c), and in detail for this present
application in Thompson (1983). The latter reference also discusses the
operation and input of the coordinate code used. The essential feature
of this curvilinear coordinate system is that some coordinate line seg-
ment is coincident with each segment of the physical boundary, including
liﬁ interior obstacles. This allows all difference expressions to be taken
;P‘ along coordinate lines regardless of the boundary shape.
83. With such a coordinate system, all computation can be done on
o a square grid on the rectangular transformed region regardless of the
. shape of the physical region. This allows the physical configuration to
o be changed via the input without modification to the code.

e Solution Grid

f{: 84. The coordinate system is generated with twice as many points
- in each direction as is intended for use in the flow solution. Thus,

f,- the grid system for the flow solution is formed by taking every other ;u:§
coordinate line., The physical variables are all defined at the grid -

points on this grid. Values needed between grid points are determined :fzﬂf_
T by simple linear averages, However, since the coordinate values are z{f:
y available at points between these grid points, coordinate derivatives at

points between the grid points, as well as at the grid points, may be

T

calculated without averaging the coordinate values. This is important

in achieving a conservative difference form, since averaging the




O
.fﬂ' coordinate values can cause different sets of coordinate values to be
b
f:y. used in equivalent representations of certain derivatives with a conse-~
;’; quent introduction of spurious effective gradients in uniform functions.
o
L Difference Representation
85. The points surrounding a point of calculation, i.e., point C
ﬁqi in Figure 1, are identified in relation to the compass directions, As
o noted above, the coordinate derivatives at any of the 25 points om this
= figure can be calculated directly from the coordinate values at adjacent
. points, e.g.,
S (g = g = Xy
il (x,) = x -
- £’NE - YEENENE ~ *N
(xp)g = %y = *%g
L (xn)NE = *NNNENE ~ ¥p’ ©FC-
_ since the coordinate system 18 generated using twice as many points in
'). each direction as will be used in the flow solution.
1.:.
Nk 86. The flow solution, however, is represented only at grid
Zjﬁ points, so that averages must be used at other points. Thus
LY !
fp =72 (g * fgp)
o fop ™ a (f, + £ + £+ £ )
3 NE 4 C EE NN NENE
9.
:;‘,
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Figure 1. Coordinate scheme for finite-difference representation

With these values one can calculate the derivatives of the flow variable

at all points, as illustrated for the coordinates above.

87. The flow variables are stored in 2D arrays, so that the fol-

lowing correspondencies apply:

BRSO
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F(1, J)
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EE F(I +1,J)

h
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NN F(I, J+1)

fNENE =F(I +1, J + 1), etc.

88. The volume of integration used is that indicated by dotted
lines in the figure, and the Jacobian J thus represents the area of
the four-sided area in physical space corresponding to this square in
the transformed plane. The fluxes must therefore be represented on the
sides of this square in the transformed plane, meaning that the ¢ and
n derivatives in the momentum, energy, and mass residual equations
(Equations 77, 78, and 80) are represented as

(fE)C = fE - fw

i
Lo
!
[N

(fn)c I S

Difference Equations

89. The finite-difference representations for the various terms
in the equations are discussed below, All types of terms are covered,
but the full equations are not given here because the code (Thompson and
Bernard 1985) is written with all terms identified therein,

Time derivatives

90. All time derivatives are represented by first- or second-

order backward difference expressions:

n 1 n n-1 n-2
(f ) = it (clf + c2f + c3f ) (81)
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izii where the superscript indicates the time level and the coefficients
jki’ (cl. Cys c3) are (1, -1, 0) for the first order and (%5 -2,-%) for second
o order. Second order is used for all but the first step, where the first
:iﬁi order must be used to start the solution,
E:if Convective terms .
S0 91. The convective terms are of the form (Bpofﬁ)g or (BpofTr)n s ;.‘
e where f 1is 1 for continuity, u and v for momentum, and e for ?;f,
ii;: energy. These terms can be represented by central or upwind differ- .; i
:;j encing, the choice being designated in the input. Central differences 755;:
??:: are second order while upwind is first order. Although the conservative g
_— form BpoftJ + (Bpofﬁ)E + (Bpof\'?)n is standard, it is also possible to
- ? choose the nonconservative form BpOth + Bpoﬁf)E + (Bp°\7f)n obtained
k:r: by using the continuity equation in the momentum and energy equationms,
EV. or the ZIP form (Zalesak 1981), via an input parameter.
i}? 92. The conservative central difference expressions are of the
i;? form
- (Bpofﬁ)%]c = (Bpofﬁ)E - (Bpofﬁ)w (82a)
: (Bpof;)n]c = (Bp fv)y - (Bp _fv) (82b)
o while the nonconservative central forms are
oy . .
__r_T:;:; (Bouf )¢ = (Bo W (Ep - £ (83a)

(Bo VE ) = (Bp V) (fy - £5) (83b)

The conservative upwind forms are
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[Bo30), ] = (Bo B gty - (B BDyey (84a)
BBpovf)q]C = (Bo V)yfy - (Bp Mgfp (84b)
where
EE Up < 0 C uy < 0
R = L =
C ug > 0 WW uy > 0
NN VN<0 ¢ VS<0
T= Bz
C vy 2 0 SS vg > 0

The nonconservative upwind forms are

(Bpoﬁfg)c = (Bpoﬁ)c(fR - f) (85a)

(Bponn)C (Bpov)c(fT - fB) (85b)
with the definitions of the subscripts R, L, T, and B as above,

except that all the decisions are based on the values GC and ;C .
93. The ZIP form is

EBpOGf)g]C = (Bp_Uf)y - (Bp _uf) (86b)

=T
o o
LR

EBpo;f)g]C = (Bp VE) - (Bp V1), (86b)
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where here the term (Bpo;f)R represents the sum of four terms, in each

of which one of the four variables is evaluated at point E and the
other three are evaluated at point C . The other terms in Equation 86
have analogous meanings, the subscripts L , T , and B being asso-
ciated with points W , N, and S , respectively, in the same manner.

94. Regardless of the mode selected for the convective terms, the
central form is always used for the evaluation of mass residual
(Equation 80) in the momentum and energy equations.

Stress and heat conduction terms

95. The stress terms are evaluated using second-order central

differences as follows. The term (lel) in Equation 77a is given by

g

~

(Bo

11 = (Boy g - (Ba )y (87)

Now, by Equation 49a,

(011)g = (04y¥, = 035% )

and, by Equation 53,

(0,)p = CRR
1IE - \3 "% "3 ¥y JE

(OIZ)E (uuy * qu?E

Finally, by Equation 52a,

1
(“x)E - J—E- [(uyn)g - (uyg)“:lE

with




[("yn)ﬁ]ﬁ " Wes - Y)e

Euyg)é]E = (uyg)NE - (uyg)SE

and analogous expressions for the other terms involved. This pattern
followed for all the stress terms in the momentum equation,
96. In the energy equation (Equation 78), the dissipation term
3(Bu,)
oij ——3;3—- is evaluated in a similar fashion. Thus, for this term,

which only occurs at point C , we have

(o) = (4 2
“11’¢ T3 V% Wylc

1
(“x)c -3 [(uyn)‘E - (uys)n]C
[(uyn)E]C = (uyn)g - (uyn)w
[(uyg)n]c = (uyg)N - (uyg)s

3(Bu,)

i
3xj C

Also, for this term, the derivatives are evaluated as is

done for (ux)C above.
97. The heat conduction terms in the energy equation (Equa-

tion 78) are evaluated analogously to the stress terms in the momentum

equations, using second-order central differences, Thus

(Bq,), = (Ba,), - (Bq)),

3
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with, by Equation 50a, s
(q)g = (qun - q2xn)E ves

and, by Equation 54a,
(ql)E - —(KTx)E ol

with

1
(TJg = 3- [(Tyn)5 - (Tyg)n]E

=1

and .»—a-
ETyn)E]E = Ty Jgg - Ty

etc. ‘,".._-‘. -

Pressure terms

98. The pressure terms in the momentum equations are of the fol-
lowing forms, which are evaluated using first-order backward -}f:f

differences: C;‘:f
(BPyy Do = Boly ) (Po = B (88a)

(BP ye)o = Be(yp e (Bp = Pgg) (88b) i?ﬁf?

L 5 A A N i)
4 T
[ P 4'_"t.|.'
S e
-

?i- The reason for the one-sided differencing is explained below. ;tizi
L R
N e
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R Chorin's method for
: calculating pressure

99. For incompressible flow, the pressure gradient serves one
purpose: it prevents loss or gain of mass within a fluid volume. Thus,
the pressure and the continuity equation are directly related. In curvi-
linear coordinates, the desired condition for conservation of mass is

given by Equation 79, which is the same thing as saying

with the mass residual D given by Equation 80. The question, of
course, 1s how to find a pressure distribution that maintains this

condition.

100. Consider the divergence of the width-averaged momentum equa-
tion, obtained by summing the x-derivative of Equation 482 and the
y-derivative of Equation 48b:

3 3 _
D, + 3E (BynPx - anPy) * 5 (BxEPy ByEPx) = RHS (89a)

Note that all terms not involving the pressure or the mass residual have
been placed anonymously in the right-hand side (RHS). The expressions
for Px and Py are the nonconservative forms given by Equations 39
and 40. Employing a backward time-differencing scheme for Dt » Equa-

e tion 89a can be rewritten as

c
1 3 d
e D * 5 (By P, - anpy) * 5 (BxEPy ByEPx) RHS (89b)

i? with D representing the current mass residual, RHS containing the
R values of D from previous time steps, and ¢y being the leading
coefficient in Equation 81.

101. Now suppose that the left-hand side (LHS) of Equation 89b is

calculated by a convergent iteration scheme such that




e e
L s ™ = pgs@D (89¢)
v where the superscript (m) indicates the iteration céunt. If the R
:f scheme is truly convergent, the condition D = 0 can be achieved by : -:{
~f setting u?
i ( ) ._':,.‘IT.\.-:_-;
- D™ =0 !%‘t?}
2 NN
. in each successive calculation of the left side of Equation 89c. This :ﬁ?;f:

in itself defines an iteration scheme, namely

3 (m) (m) 3 (m) (m)
3E [Byan - anPy ] + N [BXEPy - ByEPx ]

c

_J1 (m-1) B8 (m-1) _ (m-1)
= 3¢ D + 3¢ [Byan anPy ]

:" r'*:‘ i L '.r‘l',‘i._.

T PR
e e e P W T

* L

+ -é—% [Bng}Em-l)- ByEP’((m—l)] (89d)
Equation 89d is a Poisson equation for pressure that must be solved at

- each iteration for the entire flow field. What remains is to select the
difference expressions that will represent the quantities Px s Py ,

- and D .,

102. In the numerical solution of the momentum equations (Equa-
tions 77a and 77b), one can choose upwind, central, or ZIP differencing
}~ for the advective terms, with central differencing for the viscous

terms. Experience has shown, however, that central differencing for the
pressure terms in the momentum equation, and for the mass residual in
: the continuity equation, promotes numerical oscillation on regular
ﬁ:. grids. The way to avoid the latter problem is to use a staggered grid
(pressure and velocity calculated at alternate grid points) or, for the
- present work, to use one-sided differencing for the pressure gradient

o and for the continuity equation. While this does not reduce the

s

A Ty
8
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:3 accuracy of the momentum calculation, it does reduce the conservation of
o mass to a first-order approximation.

o 103. Assuming the coordinate derivatives constant to first order,
= but retaining B as a variable, the pressure terms in Equation 89b

hY

-7 reduce to

y 3 a 3 B 3

-— - P ¥ e - = —

58 (BYnPy = BxpPy) = 537 (BR) - F 57 (BR))

- 9 y_9d B 3

- —_— - P 2 e — - — —

an (BXEPy ByE x) J an (Bpn) J on (Bpe)
L g

:; The one-sided difference approximations for the mass residual in Equa-
:; tion 89d, and for the pressure derivatives in Equations 82a, 82b, and
jf 89d, are as follows

T Pp=Pc - Py

' Pn = Fc = Pss
f:

AN 3

]

. =2 (BP.) = (BP ). - (BP.)

N 9€ n n“EE n’C
5 2 (8p,) = (BP,) - (BP,)

a an g E°NN £°C
=2 (8P ) = (BP ) . - (BP)
L an n n’NN n’C
'\.;_

: d Y P ~
ﬂ;: 3¢ (Bu) = (Bu)EE - (Bu)C
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2

T (BV) = (BV) - (Bv),

These approximations reduce Equation 89d to

CON 3% ("CBE = BeBe * YcBN)Pém)

[od
=0, Z%‘ EBG)EE - (Bﬁ)c + (BG)NN - (BG)C]

(m-1) 2 (m-1)
+ (OT) -3, (u.CBE - BB, *+ yCBN)PC (89e)

where OT represents pressure terms other than the central pressure

- '-’..‘ P .
;.., - C
o 104. The final step in defining the iteration scheme for pressure

is to equate the OT terms on each side of Equation 89%e, such that

p(@ _ p(m=1) _ Po%17¢
C c 26t (a By ~ BB, + v.BY)

EBG)EE - (B GH (BY) g - (Bc)é](m‘l)

Numerical experimentation has shown that, for nonsquare grids, this

scheme converges only with underrelaxation, 1i,e.,

p@ _ pm-1) _ wof1lc
C C 20t (acBp - BB, + yBy)

- - - ~ 7(n-1)
BBu)EE - (BR) g+ (BN - (Bv)é] (89¢)

-----
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where

0<w<l (89g)

Equations 89f and 89g constitute a variation of Chorin's (1967) method
for calculating pressure. The scheme is applied on boundary points and
field points alike.

Boundary conditions

105. 1In all expressions for temperature and velocity boundary
conditions, second-order central differences are used for derivatives
along the boundary, and first-order one-sided differences are used for
derivatives off the boundary, Thus, for example, on an n-line boundary

with the field to the north, we have

(fE)C f_ - f (903)

(f ) ) (90b)

n'c

|
N
—~
Fh
Z
1
Hn

Corners

106. Convex corners in the transformed plane are treated by
averaging the results of separate applications of the temperature and
velocity boundary conditions on the two faces of the corner.

107. Concave corners are treated simply by averaging the extra-
polated values along the two faces of the corner, using first- or

second-order extrapolation as selected on the input.

Calculation Procedure

108. The momentum and energy equations are solved simultaneously
at each time step by successive overrelaxation (SOR) iteration. 1In the
difference representation, all coefficients of values at the central
point C are factored (i.e., grouped) together to speed up the iterative

convergence. In the energy equation, this requires a short inner
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iteration since the energy and temperature at the central point both Ef%ﬁ
appear in the equation., The SOR iteration involves first calculating '
new values from the difference equations and then taking the new itera-
< tive values of velocity and temperature as weighted averages of these l:}?i{
values and the values from the previous iteration, the weight assigned L
to the newly calculated value being the acceleration parameter w . The ffk:;u
field is swept repetitively, calculating new velocities, temperature, k
. and pressure at each point in succession, Before each field sweep, the

- boundary values are updated. These {terative sweeps are continued until

convergence occurs or until a prescribed number of iterations has been

completed. In the latter case, the solution may be directed to stop and
store the partially converged results or to continue to the next time

step. Output is provided in the form of plotted velocity vectors and

_; contours of density, temperature, or pressure, as well as printed field

values.

Acceleration Parameters

109. The acceleration parameters for the SOR iteration are calcu- !% -

lated locally for the momentum and energy equations (see Thompson,

'y
Yy F v r
. .

SR Thames, and Mastin 1977). With these equations represented by the

v
g
.

it
[
|
13
i

general form

A f + A, f + B f_ + B

17EE 2°nn 17°¢ fn *+CE+D=0 (91)

2

o where D (not to be confused with the mass residual here) contains all
‘ cross-derivative terms and all other terms not represented explicitly,
- In the case where convection dominates diffusion, or vice versa, in both

directions, the optimum acceleration parameters are given by

2 . .2 2 .2 »
1f 4A| > B and 4A, > B, (92a)
65
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RS
3 W= 2 1f a2 < B2 and a2 < 8] (92b)
- 2
p: 1 + 1 +p
e J
where
‘AAZ - 82 JéAZ - BZ‘
p, = 1 1 cos L + : 2 cos [——- (93)
J IC-2(A1+A2)[ I+1 ]c-z(A1+A2)| J+ 1
In all other cases, the underrelaxation represented by the second of
o these situations is used. Here I and J are the field dimensious.
\’ 110. In the momentum equations (Equations 77a and 77b) we have,
o neglecting derivatives of the width B and defining F = 4/3 ,
{4
\_- (0' y -0 x) E_P_‘E uyz_uyy
o 117n 12" n"¢ J E’n n"£'njg
-E-uxx-ux2+vxy-vxy
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the stress terms in x-momentum are

2 2 Fu j_ 2 - {y? AN
'% I}s"nn * (x@;)nun - (xexn)nuc] T [yeunn * (yEyn)nue (yc nn

2 2
- [F(yn)e * (xn)a - Gegxpdy - F(ycyn)n]ui

]
whe
¢ 1
—
b
“«
3N
+
»®
3N
p———
[~
Ml
gl
rrf
)
™
+
»”
™
Svam—
[
>
3

Then, for the x-momentum equation,

G
C‘Jp"A—t

and for the y-momentum equation,
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where G 1is 1l for first-order time derivatives and % for second-order,

By similar developments, we have for the energy equation (Equation 78),

Ap =8y =5 G+
B = pu -3 (a, - 8)
BZ=03~§(YH-BE)
C=J0Kg

Turbulence Model

111, The cumulative effect of turbulence and the correlation
terms from the lateral averaging is modeled by using horizontal and
vertical eddy viscosity and diffusivity coefficients. This is done be

replacing the viscosity uyu by u + pD (no summation) in the stress

i

68

L) . . e
. ST
AR

ST RT SRR SN

S e
DA
T N, W, P
o ] A




elements

oij » and the conductivity «k by «k + p E CJ in the heat
flux q . Thus, D11 and D12 are the horizontal and vertical eddy
viscosities, respectively., Three variations of D and D are pro-

11 22
vided for input selection: (a) uniform values; (b) the model of Edinger

and Buchak (1979), as given in Johnson (1981); and (c¢) the model of Kent
and Pritchard (1959), as given in Brandsma and Divoky (1976).
112, The model of Edinger and Buchak is implemented in the pre-

sent model as

2 3| u|
_ hd ~
Dy, = 0.16\=~ } 57 (94a)
0
" D
e I
/1 + 10R,
D22 = 4 (94b)
2
Y.ty
2at Ry <0
.
C1 = 1,33 Dll (95a)
(~ ¢
R, >0
5
(1 +3.33 Ri)3/‘ 1
C2 = 4 (95b)
¢, =D,, R <0
\
The model of Kent and Pritchard is implemented as
2 a\2 lul
D,, = 0.0086 d -] — (96a)
11 d0 dO
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i D,, = 4 (96b)

e Dy, Ry 20
Y L
- -5
R €= Pn RO
{‘r. 0 \:::,
AT A
35 * \
) :‘(‘3 CZ = DZ ) 1.“.

113. In both of these, the Richardson number Ri is given by ;:,}
T e
- s

] 2o t

R, - - —X (97) —
ook . 3jul 2 L
AL o
':::Z-‘“: °l 3y RS
L re

e and d is the local depth, dO is the total depth, and h 1is the

~

height above the hottom, i.e., h =dy-d . Also if il is less \]
5 ju ]
S than 0.7 —HE , the former is reset to the latter value. ::i%

MY

114, The model also includes an optional artificial eddy NG

]

I3
PRI T )

viscosity and conductivity in the form .

T

Y. . r ' "
et
AT -' 3

o L EIPT Sty (98)
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{
c, =cC, =14 (99)

'{;ft where 1 is the mases vesidual (Equation 80) calculated with central

differences,
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PART VI: RESULTS

115. The discrete representation for the equations of motion,
with the solution thereof, has been implemented in the computer code
WESSEL (Thompson and Bernard 1985). Boundary-fitted curvilinear coordi-
nate systems are generated numerically by a separate code, WESCOR
(Thompson 1983), allowing boundaries of arbitrary shape to be used.

116, The WESSEL code was run for three comparison cases with
distinct geometries:

a. Selective withdrawal from a rectangular channel with
linear stratification.

b. Cold inflow into a flume with nonuniform width and depth.

c. Flow over a crested weir, with and without stratification.
While this range of geometries and flow conditions is not exhaustive, it
does afford a sampling of typical applicaticns for the present model.

1'7. In the calculations discussed below, conservative upwind
differencing was used for the convective terms, with second-order back-
ward differencing for the time derivatives., Variable acceleration
parameters were used for the momentum and energy equations, with the

boundary-temperature acceleration parameter set at unity, The accelera-

tion parameter for the Chorin pressure calculation was fixed at
w = 0.88
A value closer to unity might have improved convergence in some cases,

but the cheosen value proved satisfactory for all cases and geometries

considered. Calculations were made without using artificial viscosity

and conductivity, and the turbulence models were inactive unless other-
wise noted. As previously stated, the coordinate systems are generated
vith twice as many points as the flow fields. The initial velocity
field was always specified such that the initial flow was horizontal,
with uniform flow rate.

118. Results are presented primarily in the form of velocity

vectors and temperature (or density) contours at selected time steps.

T




All runs were made on the CRAY-1 computer at the Boeing Company,

Bellevue, Wash,

Selective Withdrawal from a Rectangular
Channel with Linear Stratification

119. A pair of classic papers by Pao and Kao (1974) and by Kao,
Pao, and Wei (1974) quantified the mechanisms associated with the estab-
lishment of selective withdrawal from reservoirs. The first comparison
calculation in the present work duplicates the physical conditions for
one of the experiments reported in Kao, Pao, and Wei (1974).

120. Consider a rectangular channel of uniform width and depth,
with linesr density stratification, such that

F = 0.014

where F 1is the densimetric Fourde number given by

Fa-L
Na2

with
Q = flow rate*
N = the Vaisala frequency
d = channel depth

‘. __&921/2
oody

The specified value of F was achieved herein by setting

* In this case (linear stratification), the flow is vertically sym-
metric., The values of Q and d specified here represent half of
the total flow rate and vertical depth,




d =1 fe¥t
2
g = 32.2 ft/sec

Py =1 gm/cm3 = 1.94 slug/ft3

%‘1 = 0.0071 —5"‘—3 = 0.0138 slug/ft’
y ft-cm

w = width = 1 ft

Q = 0.00684 ft3/sec

The experimental channel length was 30.5 ft, but for the calculation
this was reduced to 23 ft, which was long enough for the comparison of
results near the outlet. The coordinate grid used was 101 X 41 mesh,
with a 51 x 21 flow field mesh (Figure 2), representing the top half of
a vertically symmetric flow field. Figure 2 shows only the last 4 ft or
- so of the channel. The longitudinal grid spacing is uniform (0.1 ft)

- for the last 3 ft, and the vertical spacing is uniform (0.05 ft) every-

where in the flow field. Detailed results were desired only for the
last 3 ft, so exponential spacing was used for the 20 ft upstream.

121. The reference or characteristic time is the inverse Vaisala
frequency,

N1 = 2.09 sec

and the associated nondimensional time 1is

t* = Nt

t A table of factors for converting non-SI units of measurement to
metric (SI) units is presented on page 4.
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Flow System

3 2 1 £ .
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Figure 2. Coordinate system for rectangular channel

The reference velocity is

U= ;‘} = 0.00684 ft/sec

so the nondimensional velocity is ;:;:;:_
u* = u/U RROSES

122. WESSEL calculations were executed for times up to
t = 125 sec (t* = 60) with time steps of 2.09 sec (At* = 1,0) and
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0.209 sec (At* = 0.1). Further reduction of the time step produced no
significant change in the results. The number of iterations was fixed
at 15 per time step.

123, The inflow boundary condition (i = 1) was extrapolated
velocity and density with flow balance employed. The upper boundary
(j = 21) was idealized as a no~slip wall with fixed density. The sym-
metry boundary (j = 1) was treated as s slip wall with fixed density.
The downstream boundary (i = 51) was modeled as a no-slip wall with
extrapolated density, except for the outlet (1 = 51, j = 1 to 4) where
the density was extrapolated and the velocity was held fixed. The ini-
tial condition was a uniform horizontal flow field (u = 0.00684 ft/sec).

124, Figure 3 shows comparisons of calculated and measured veloc-
ities versus time along the symmetry line (j = 1). Stations 1, 2, and 3
are, respectively, 1, 2, and 3 ft upstream from the outlet. Certain
facts are readily obvious:

. The velocities at early times are correctly predicted,.

jo* o

. The steady-state velocities are underpredicted.

Accuracy improves with distance from the outlet,

le 1o

The smaller time step (At* = 0.1) provides better
resolution of the transient behavior, but the larger
(At* = 1.0) achieves essentially the sasme accelerations
(somewhat delayed) and steady-state velocities.

The deterioration of the symmetry-line velocity predictions with time,
near the outlet, can be understood in part after an examination of the
predicted and observed steady-state velocity profiles., Figure 4 shows
the calculated and observed profiles at stations 1-3. The sharpest pro-
file occurs nearest the outlet, where the highest acceleration occurs on
the symmetry line. The numerical calculation underpredicts the maximum
velocity primarily because the symmetry line (j = 1) is idealized as a
slip wall, which means the horizontal velocity is extrapolated from the
next line up (j = 2), so the code does not resolve the large velocity
gradient between j =1 and j = 2 . Hence, as the slope of the ob-
served profile becomes gentler upstream of the outlet, the agreement

between calculation and experiment improves.
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© DATA (Kao, Pao, and Wei 1974)
e WESSEL, At* = 0.1
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Figure 3. Nondimensional velocity versus time
along line of symmetry for rectangular channel
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Qe Figure 4. Nondimensional steady-state velocity
profiles (t* = 60) for selective withdrawal

from rectangular channel
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125, Figure 5 presents vector plots of the developing flow field
between station 3 and the outlet. This shows clearly the growing region
of circulation at t* = 10 and t* = 20 , and the plot for t* = 60
represents the steady state. The results in Figure 5 were obtained with
At* = 0,1

Cold Inflow into a Flume with Nonuniform Width and Depth

126. The experimental facility represented in this comparison is
the Generalized Reservoir Hydrodynasmics (GRH) flume at WES, described in
Johnson (1981). The flume is 80 ft long with a 3- by 3~ft cross section
at the downstream end. The cross section of the upstream end is 1 by
1 ft, and the width expands uniformly with length over the first 20 ft,
to a cross section 1l ft deep and 3 ft wide. Thereafter, the width
remains constant while the depth grows uniformly with length, to 3 ft at
the downstream end. Plan and side views of the GRH flume appear in
Figure 6.

127. The water in the flume was at rest and homogeneous at the
beginning of the test, with the temperature being 70.6° F., Cold water
was input 1.5 ft from the upstream end at a temperature of 62.0° F. A
baffle restricted the cold water to enter through the lower 0.5 ft of
the cross section. The inflow rate as 0.022 cfs, with the outflow rate
at the downstream end being the same. The outflow was removed from a
l-in.-diam port located 0.5 ft above the bottom of the flume and 1.5 ft
from either side. The flow was observed to be relatively smooth and was
probably laminar, or at least only in the transition range to turbulent
flow. Numerical results from several codes are compared with experi-
mental results in Johnson (1981).

128, For simulation with the WESSEL code, a 33 x 25 coordinate
grid was used, with a 17 x 13 flow field grid (Figure 7)., The inlet was
specified as the lower 0.5 ft (L = 1, j = 1 to 7) at the upstream end,
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and the outlet was idealized as a single grid space (i = 17, j = 3)

0.5 ft from the bottom at the downstream end. Velocities were held
fixed at the inlet and outlet, with the initial (horizontal) velocity
field specified such that the flow rate was 0.022 cfs everywhere in the
flume. The temperature was fixed at the inlet and extrapolated at all
other boundaries. The free surface was modeled as a slip boundary, and
the no-slip condition was employed on the walls.

129, Calculations were made for (s) laminar flow, (b) the Kent
turbulence model, and (c) the Edinger turbulence model. In each case,
the time step was set at 5 sec with a limit of 50 iterations per time
step, and the code was run for 500 time steps.

130, Figure 8 shows a comparison of the WESSEL results with
experimentsl data and with predictions of the LARM code of Edinger and
Buchak (1979). The underflow front position is correctly predicted by

the laminar calculation and by the calculation using the Kent turbulence

model. The total drop in outlet temperature is underpredicted, possibly
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due to the coarse grid and rather crude treatment of the outlet itself.
Furthermore, while the rate of tempersture drop is initially correct,

........

Evidence for this can be seen in the calculation with the

the onset is probably delayed by the diffusive effects of upwind dif-
Edinger turbulence model, which is far more diffusive than the Kent

ferencing.
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temperature drop at the outlet.
: 131. Flow field development with time (velocity vectors and .

- temperature contours) for the three flume calculations can be seen in
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Figures 9-14,.* The laminar case (Figures 9 and 10) is almost indis-

- (NN
L 3

LT

tinguishable from that with the Kent turbulence model (Figures 11

R

and 12). The cold water flows along the bottom to the outlet, csusing

£ a
i ' s
)

[y

recirculation in the warm water, with a cooling effect that evenéually

¥

works its way upstream. The Edinger turbulence model (Figures 13

L -')
“').- .
s S 5T
s £ A i3

13
P

and 14) produces results that are quite different from the first two

NI
’

cases, Instead of flowing just along the bottom, the cold water dif-
S fuses, forming a thicker and slower-moving underflow front. This delays
the temperature drop at the outlet but causes more cooling in the flume

as a whole.

*tq Flow over a Crested Weir

N 132. As a final example, consider a rectangular channel of uni-
L& form width (1 ft) with a crested weir (Figure 15). Flow tests were con-
S

ducted for this configuration to verify a finite-element model.** 1In

SO one test, the flow (0.074 cfs) was initially stratified upstream of the
weir, but unstratified downstream. In another test, the flow (0.7 cfs)
was unstratified throughout the channel. Figure 16 shows the density
‘"3 profile for the stratified case, 4 ft upstream of the weir crest, U
) 133, WESSEL calculations were made for (a) constant density with ;:tii
e total discharge Q = 0.7 cfs , and (b) initial density stratification on RN

) both sides of the weir with Q = 0.074 cfs . In the latter case, the

initial density profile was that given in Figure 16. The boundary-
fitted coordinate system (Figure 17) consisted of a 101 x 35 grid, with
(- a 51 x 18 flow field grid. The no-slip condition was employed on the
channel walls, and the free surface was idealized as a slip boundary.

Density was extrapolated at all boundaries. The outlet was 0.6 ft high

L. * The velocity vectors along the bottom are actually parallel to the

] bottom. They do not appear so in the vector plots because the flume

A is not drawn to scale. This also steepens the apparent horizontal
temperature gradients in the contour plots.

*% Personal Communication, 1983, J, L, Grace, Jr., Hydraulics Labora-
tory, US Army Engineer Waterways Experiment Station, Vicksburg, Miss.
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Figure 10. Temperature contours for laminar flow calculation in GRH S
flume (contour interval = 0.5° F) (Sheet 1 of 3) AR
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(j =1 to 7) at the downstream boundary (i = 51), and the outflow veloc-

The inlet was taken to
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be the entire upstream vertical boundary (1.7 ft high, i =1, j = 1

to 18).

The inflow velocities were held fixed and uniform for the

In the stratified case, however, the inflow

unstratified calculation.
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velocities were extrapolated, using the flow balance option, to accommo-

date possible inflow variations caused by density changes upstream of

the weir. The time step for both cases was set at At = 0.1 sec , and
the number of iterations wes limited to 25 per time step for the first
50 steps, and 15 per time step thereafter.

134. Figures 18 and 19 present comparisons of the measured* and
calculated velocity profiles, at the upstream toe of the weir, for the
unstratified and stratified cases, respectively. The calculated
unstratified profile shows a stronger velocity gradient than the data
near the bottom, because the inlet condition (uniform velocity) was
specified too close to the weir (4.125 ft from weir crest) for a

parabolic profile to develop. The stratified calculation (Figure 19)

exhibits better agreement, but the backflow in the dense layer near the
bottom was not observed experimentally. Again, this is probably due to » "
(a) the proximity of the computational inflow boundary to the weir, and iLQQ
(b) the extrapolated inflow-velocity boundary condition. Improved ?*ﬁﬁ
results might be obtained by adding a longer upstream section to the -]
grid, with fixed inlet velocity and density.

135. Figure 20 shows a comparison of calculated and observed RS
velocity profiles 3.5 ft downstream of the weir crest, for unstratified &Tﬁ%
flow. The data are taken from the measurements for Q = 0.074 cfs , :"
since no downstream results are available for Q = 0.7 cfs . The
calculated results represent a unit discharge of 0.074 cfs, but they

exhibit the same general behavior as the data for 0.7 cfs.

'; ; 136. Direct comparisons of velocity vector plots are shown for

i,~f the stratified and unstratified calculations in Figures 21-23. These :
ol illustrations show clearly the dramatic contrast between the flow pat- éﬁ;&
‘}j}, terns for the two cases. Figure 24 shows time-lapse pictures of the 1 -
iift developing circulation downstream of the weir crest for the unstratified ?

v, e ey
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a
1
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T
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[
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* Personal Communication, J. L. Grace, Jr., op. cit.
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Figures 25 and 26 present the same sequence of events, on both

backflow in Figure 25 is apparently caused by the specified inflow-

sides of the weir for the stratified case.

velocity boundary condition.

appear in Figure 27.

flow.
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upstream of weir crest (Continued)
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PART VII: CONCLUSION

137, The WESSEL code is applicable to two-dimensional, time-
dependent, width-averaged, variable-density flow in arbitrary regions
with multiple inlets, internal obstacles, and boundary intrusions.
Changes in the physical configuration can be made easily via input. At
present, however, the code is not capable of simulating true free sur-
face behavior,

138. WESSEL solves the Navier-Stokes equations without assuming
the pressure to be purely hydrostatic, and this feature sets it apart
from most hydraulic codes now in use, Thus, WESSEL provides a needed
addition to the mathematical modeling capability of the Corps of Engi-~
neers, offering a means of simulating fully convective flow easily and
economically. Potential applications include selective withdrawal,
spillway approach flow, outlet works design, and pump station analysis.

139. The accuracy of the time-dependent predictions can be
expected to improve with further experience in the use of the code.
Since WESSEL is written to be very general in application, its operation
is slowed somewhat by this generality. As it now stands, about 1 sec of
CRAY computer time (scalar mode) is required to execute 15 iterative
sweeps on a 50 x 20 grid. A faster code of more limited scope could be
obtained by deleting a number of contingency checks in the present ver-
sion, Further development and evaluation is planned along these lines.
A new version of the code, using stream function and vorticity, has
already been developed and will be documented in the future.

140, The one-sided differencing scheme for the continuity equa-
tion arose from a discussion at WES,* This scheme allows the use of a
regular grid,** while retaining the point~to-point velocity and pressure
coupling of a staggered grid.t A more extensive investigation of the

method is anticipated in future work.

* Personal Communication, 1983, R. S. Bernard, J. F. Thompson, and
P. J. Roache, US Army Engineer Waterways Experiment Stationm,
Vicksburg, Miss.

** Pressure and velocity calculated at the same grid points.

t Pressure and velocity calculated at alternate grid points.
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APPENDIX A: NOTATION

B Lateral width

;;ff D Mass residual

;gﬁ e Internal (thermal) energy per unit mass

_,; F Densimetric Froude number

j;ﬁ; f Arbitrary function

?; g Gravitational acceleration

‘; gy Components of gravity vector .i‘
ifs h Enthalpy per unit mass ' f?;{g
EE: i,] Unit vectors in x- and y-directions, respectively b;i}i
o N .._"
i;‘ J XY T % L
5;? N Vaisala frequency

t{: n, Components of surface-normal vector

. n Surface-normal vector
;;i n Superscript indicating time-step number
AR

%;i P Pressure

J; py  Hydrostatic pressure
‘;Ei P, Reference pressure
-3;2 Q Flow rate

‘?: 9, Components of heat flux vector

ii} b3 Position vector

.Ei s(t) Surface of moving volume V(t)

::? T Temperature
= ¢  Time
- t*  Nondimensionel time
;if;
e Al

o

~Y
oy




ST P e R R T ‘.‘_v.--l.§.7'.‘.".‘-‘i DL St Jiar e i i g et AN Sk R T

S
E Ui Components of surface velocity
) u, Components of fluid velocity
E u Fluid velocity vector
i u#* Nondimensionsl velocity
‘ u,v x- and y-components of u , respectively
a u,v Fluxes of u through surfaces of constant ¢ and constant n ,
; respectively
X, Components of cartesian position vector

5 X,y Cartesian coordinates
f a x2 + y2
. n n
, B *g%n ¥ Ye¥n
: T
’ Gij Kroniker delta
; v Gradient operator
i v Laplacisn operator
v A Incremental operator

u Dynamic viscosity
‘ u! Bulk viscosity

K Thermal conductivity .
-E P Density :~::
E P, Initial density :i;ig%é
. S
b P, Reference density -
o ogy  Components of stress tensor -;;Ei;a
2 Tij Components of shear stress tensor i;isiii

NN




Curvilinear coordinates

Esn

Acceleration parameter
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